

On the overflow and *p*-adic theory applied to homomorphic encryption

Jacob Blindenbach^{1,2}, Jung Hee Cheon^{3,4}, Gamze Gürsoy^{1,2}, **Jiayi Kang**⁵ ¹Columbia University, ²NYGC, ³SNU, ⁴CryptoLab, and ⁵KU Leuven CSCML 2024, December 19

Homomorphic Encryption (HE)

Overflow in HE

- ▶ The HE plaintext space \mathcal{P} and the message space \mathcal{M} of the client may not be the same.
- ▶ The client needs to encode a message into the plaintext space

Encode :
$$\mathcal{M} \longrightarrow \mathcal{P}$$

 $m \longrightarrow \mathsf{Encode}(m)$,

whose reverse procedure is Decode.

- When $|\mathcal{M}| > |\mathcal{P}|$, overflow is a natural phenomenon when performing arithmetics $(\mathcal{M}, +, \times)$ from HE.
- ▶ Following [CLPX18, HDRS23], we consider $\mathcal{P} = \mathbb{Z}/q\mathbb{Z}$.

Avoiding Overflows or Tolerating Overflows?

ightharpoonup For the message space $\mathcal{M}=\mathbb{Z}$ or \mathbb{Q} ,

$$|\mathcal{M}| = \infty > |\mathbb{Z}/q\mathbb{Z}| = q \implies \text{overflow}$$

- ▶ Previous works [CLPX18, HDRS23] suggest to avoid overflows
 - This leads to larger FHE parameters
- Our work discusses two possibilities of tolerating overflows.
- 1 Pseudo-overflows do not affect the correctness of the final output, hence do not need to be avoided.
- When $\mathcal{M} = \mathbb{Z}_p$ (the collection of *p*-adic integers), the overflow error could be bounded to a desired *p*-adic precision.

Pseudo-overflows

- ▶ If inputs and final outputs are well-bounded, intermediate results can go arbitrarily large without affecting the correctness of the final output.
 - This follows from our lattice interpretation of decoding.

Example

Let a=8.3 and b=17. In computing f(a,b)=a+b-16 using $\mathcal{P}=\mathbb{Z}/(3^{10}\mathbb{Z})$,

▶ The intermediate result of $f_1(a,b) = a + b$ is too large to be decoded correctly

$$\mathsf{Decode} \circ f_1 \circ \mathsf{Encode}(a,b) = -\frac{10}{233} \neq f_1(a,b) = \frac{253}{10}$$

The final result is however correct

Decode
$$\circ f \circ \mathsf{Encode}(a,b) = \frac{93}{10} = f(a,b).$$

Overflows in the *p*-adic arithmetic

- ▶ Consider $\mathcal{M} = \mathbb{Z}_p$ being the collection of *p*-adic integers.
 - Different from Euclidean norm, p-adic norms are ultra-metric

$$|a+b|_p \le \max\{|a|_p, |b|_p\}, \ \forall a, b \in \mathbb{Q}.$$

• For $\mathcal{P} = \mathbb{Z}/(p^r\mathbb{Z})$, the overflow error is always bounded by p^{-r} in the p-adic norm.

Example

Recall $\mathsf{Decode} \circ f_1 \circ \mathsf{Encode}(a,b) = -\frac{10}{233} \neq f_1(a,b) = \frac{253}{10}$. Their 3-adic representations are

$$\left(-\frac{10}{233}\right)_3 = .1000010220120\cdots$$

 $\left(\frac{253}{10}\right)_3 = .1000010220022\cdots$

hence the overflow error is $|\mathsf{Decode} \circ f_1 \circ \mathsf{Encode}(a,b) - f_1(a,b)|_3 = 3^{-10}$.

Implementation and Performance

Our p-adic encoding and decoding is implemented as a wrapper to the HElib library in https://github.com/G2Lab/padicBGV.

n	$\log_2 Q$	b	t	D_n	D_o	D	$ e _2$	Method
2^{14}	435		_					[CLPX18]
		2^{16}	_	11	11	11	0	[HDRS23]
		_	2^{8}	15	_	15	2^{-8}	Ours
2^{15}	890							[CLPX18]
		2^{16}						[HDRS23]
			2^{8}	32	—	32	2^{-8}	Ours

Table: Comparison of the maximum multiplicative depth D of supported circuits in [CLPX18], [HDRS23] and our p-adic encoding to BGV for input size $L=2^8$

Conclusion and future works

- Overflows can be tolerated in two aspects
 - pseudo-overflows do not affect the correctness
 - for p-adic arithmetic, the overflow error is small in the p-adic norm
- ▶ Under the same ciphertext parameters, tolerating *p*-adic errors supports circuits up to 2x deeper
- ► For future works, further investigations of *p*-adic applications with privacy concerns would be valuable to apply our methods

Thank you for your attention!

ia.cr/2024/1353