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Overflow in HE
▶ The HE plaintext space P and the message space M of the client may

not be the same.
▶ The client needs to encode a message into the plaintext space

Encode : M −→ P
m −→ Encode(m),

whose reverse procedure is Decode.
▶ When |M| > |P|, overflow is a natural phenomenon when performing

arithmetics (M, +, ×) from HE.
▶ Following [CLPX18, HDRS23], we consider P = Z/qZ.
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Avoiding Overflows or Tolerating Overflows?

▶ For the message space M = Z or Q,

|M| = ∞ > |Z/qZ| = q =⇒ overflow

▶ Previous works [CLPX18, HDRS23] suggest to avoid overflows
• This leads to larger FHE parameters

▶ Our work discusses two possibilities of tolerating overflows.
1 Pseudo-overflows do not affect the correctness of the final output, hence

do not need to be avoided.
2 When M = Zp (the collection of p-adic integers), the overflow error

could be bounded to a desired p-adic precision.
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Pseudo-overflows
▶ If inputs and final outputs are well-bounded, intermediate results can go

arbitrarily large without affecting the correctness of the final output.
• This follows from our lattice interpretation of decoding.

Example
Let a = 8.3 and b = 17. In computing f(a, b) = a + b − 16 using P = Z/(310Z),
▶ The intermediate result of f1(a, b) = a + b is too large to be decoded correctly

Decode ◦f1 ◦ Encode(a, b) = − 10
233 ̸= f1(a, b) = 253

10

▶ The final result is however correct

Decode ◦f ◦ Encode(a, b) = 93
10 = f(a, b).

4 On the overflow and p-adic theory applied to homomorphic encryption



Overflows in the p-adic arithmetic
▶ Consider M = Zp being the collection of p-adic integers.

• Different from Euclidean norm, p-adic norms are ultra-metric

|a + b|p ≤ max{|a|p, |b|p}, ∀a, b ∈ Q.

• For P = Z/(prZ), the overflow error is always bounded by p−r in the p-adic norm.

Example
Recall Decode ◦f1 ◦ Encode(a, b) = − 10

233 ̸= f1(a, b) = 253
10 . Their 3-adic representations

are
(− 10

233)3 = .1000010220120 · · ·

(253
10 )3 = .1000010220022 · · · ,

hence the overflow error is | Decode ◦f1 ◦ Encode(a, b) − f1(a, b)|3 = 3−10.
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Implementation and Performance

▶ Our p-adic encoding and decoding is implemented as a wrapper to the
HElib library in https://github.com/G2Lab/padicBGV.

n log2 Q b t Dn Do D |e|2 Method

214 435
257 — 15 14 14 0 [CLPX18]
216 — 11 11 11 0 [HDRS23]
— 28 15 — 15 2−8 Ours

215 890
216 — 23 16 16 0 [CLPX18]
216 — 23 15 15 0 [HDRS23]
— 28 32 — 32 2−8 Ours

Table: Comparison of the maximum multiplicative depth D of supported circuits
in [CLPX18], [HDRS23] and our p-adic encoding to BGV for input size L = 28
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Conclusion and future works
▶ Overflows can be tolerated in two aspects

• pseudo-overflows do not affect the correctness
• for p-adic arithmetic, the overflow error is small in the p-adic norm

▶ Under the same ciphertext parameters, tolerating p-adic errors supports
circuits up to 2x deeper

▶ For future works, further investigations of p-adic applications with privacy
concerns would be valuable to apply our methods
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Thank you for your attention!
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