

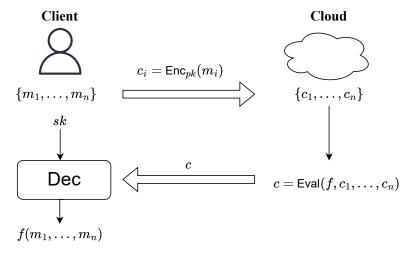
Revisiting Oblivious Top-kSelection with Applications to Secure k-NN Classification

Kelong Cong^{1,2}, Robin Geelen¹, **Jiayi Kang**¹, and Jeongeun Park¹ COSIC, KU Leuven, and ²Zama Seminar at University of Luxembourg, March 14, 2024

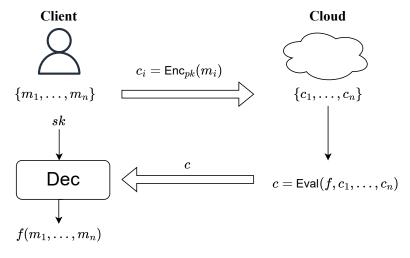
Outline

- Oblivious Algorithms for Secure Computation
- Oblivious Top-k Selection
- Application: Secure k-NN Classification
- 4 Summary and Conclusion

FHE supports secure computation outsourcing

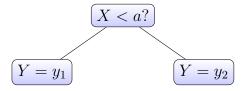


FHE supports secure computation outsourcing

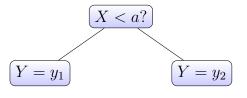


Promising future: imagine asking ChatGPT encrypted questions!

- Converting input-dependent plaintext programs into ciphertext programs leads to program expansion
- Example of program expansion:

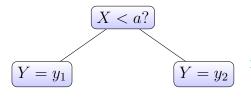


- Converting input-dependent plaintext programs into ciphertext programs leads to program expansion
- Example of program expansion:



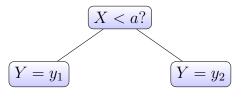
 $\begin{tabular}{ll} {\bf Homomorphically compute branch} \\ {\bf b} = \mathbbm{1}(X < a) \\ \end{tabular}$

- Converting input-dependent plaintext programs into ciphertext programs leads to program expansion
- Example of program expansion:



- 1 Homomorphically compute branch $b = \mathbb{1}(X < a)$
- 2 Homomorphically evaluate $Y = (1 b) \cdot y_1 + b \cdot y_2$

- Converting input-dependent plaintext programs into ciphertext programs leads to program expansion
- Example of program expansion:



- 1 Homomorphically compute branch $b = \mathbb{1}(X < a)$
- 2 Homomorphically evaluate $Y = (1 b) \cdot y_1 + b \cdot y_2$
- Both child nodes need to be visited

Oblivious programs and their network realization

Definition

(Data-)oblivious programs are programs whose sequence of operations and memory accesses are independent of inputs.

Oblivious programs and their network realization

Definition

(Data-)oblivious programs are programs whose sequence of operations and memory accesses are independent of inputs.

- ightharpoonup Consider comparator-based sortings for d elements
 - Quicksort has complexity $\mathcal{O}(d\log d)$, but it is non-oblivious
 - Practical oblivious sorting method has complexity $\mathcal{O}(d\log^2 d)$

Oblivious programs and their network realization

Definition

(Data-)oblivious programs are programs whose sequence of operations and memory accesses are independent of inputs.

- Consider comparator-based sortings for d elements
 - Quicksort has complexity $\mathcal{O}(d\log d)$, but it is non-oblivious
 - ullet Practical oblivious sorting method has complexity $\mathcal{O}(d\log^2 d)$
- Oblivious programs can be visualized as networks

$$m_0 \longrightarrow \min(m_0, m_1)$$

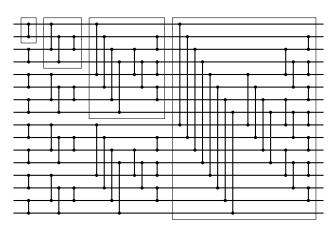
 $m_1 \longrightarrow \max(m_0, m_1)$

Figure: Comparator

Figure: Sort 4 elements obliviously

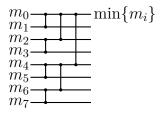
Example: Batcher's odd-even sorting network

▶ Batcher's odd-even sorting network for d input elements has complexity $S(d) = \mathcal{O}(d\log^2 d)$ and depth $\mathcal{O}(\log^2 d)$



Example: the tournament network for Min/Max

▶ The tournament network for d input elements has complexity d-1 and depth $\lceil \log d \rceil$



Outline

- Oblivious Algorithms for Secure Computation
- **2** Oblivious Top-*k* Selection
- **3** Application: Secure k-NN Classification
- 4 Summary and Conclusion

Motivation for Top-k selection problem

Definition

Given a set of d elements, a *Top-k* algorithm selects its k smallest (or largest) elements.

Motivation for Top-k selection problem

Definition

Given a set of d elements, a *Top-k* algorithm selects its k smallest (or largest) elements.

- In the huge information space (consisting of d records), only k most important records are of interest:
 - 1 define a proper scoring function
 - 2 compute score of all d records
 - 3 return the k records with the highest scores

Motivation for Top-k selection problem

Definition

Given a set of d elements, a *Top-k* algorithm selects its k smallest (or largest) elements.

- In the huge information space (consisting of d records), only k most important records are of interest:
 - 1 define a proper scoring function
 - 2 compute score of all d records
 - 3 return the k records with the highest scores
- Example applications include
 - k-nearest neighbors classification
 - recommender systems
 - genetic algorithms

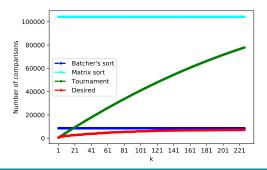
The first category uses an oblivious sorting algorithm and then discards the d-k irrelevant elements:

- The first category uses an oblivious sorting algorithm and then discards the d-k irrelevant elements:
 - Batcher's odd-even merge sort with complexity $\mathcal{O}(d\log^2 d)$ and depth $\mathcal{O}(\log^2 d)$

- The first category uses an oblivious sorting algorithm and then discards the d-k irrelevant elements:
 - Batcher's odd-even merge sort with complexity $\mathcal{O}(d\log^2 d)$ and depth $\mathcal{O}(\log^2 d)$
 - ullet Comparison matrix method with complexity $\mathcal{O}(d^2)$ and constant depth

- The first category uses an oblivious sorting algorithm and then discards the d-k irrelevant elements:
 - Batcher's odd-even merge sort with complexity $\mathcal{O}(d\log^2 d)$ and depth $\mathcal{O}(\log^2 d)$
 - Comparison matrix method with complexity $\mathcal{O}(d^2)$ and constant depth
- ightharpoonup The second category obliviously computes the minimum k times
 - Complexity $\mathcal{O}(kd)$ and depth $\mathcal{O}(k\log d)$

- The first category uses an oblivious sorting algorithm and then discards the d-k irrelevant elements:
 - Batcher's odd-even merge sort with complexity $\mathcal{O}(d\log^2 d)$ and depth $\mathcal{O}(\log^2 d)$
 - ullet Comparison matrix method with complexity $\mathcal{O}(d^2)$ and constant depth
- ightharpoonup The second category obliviously computes the minimum k times
 - Complexity $\mathcal{O}(kd)$ and depth $\mathcal{O}(k\log d)$



Alekseev's oblivious Top-k for 2k elements

- Realization using two building blocks:
 - Sorting network of size k
 - Pairwise comparison: returns the Top-k elements

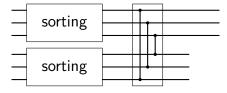


Figure: Example for k = 3

Alekseev's oblivious Top-k for 2k elements

- Realization using two building blocks:
 - Sorting network of size k
 - Pairwise comparison: returns the Top-k elements

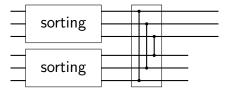
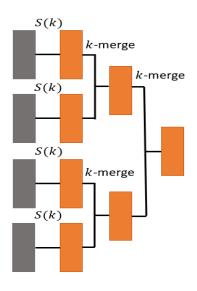


Figure: Example for k = 3

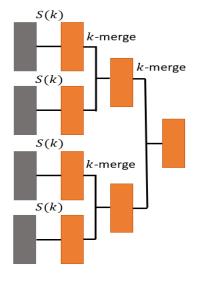
lacktriangle Can be generalized to Top-k out of d elements in tournament manner

Alekseev's oblivious Top-k for d elements



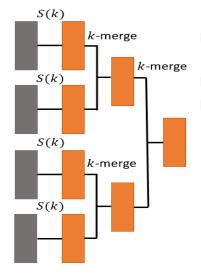
► Alekseev's procedure realizes *k*-merge as pairwise comparison followed by sorting

Alekseev's oblivious Top-k for d elements



- ▶ Alekseev's procedure realizes k-merge as pairwise comparison followed by sorting
- ▶ Complexity of k-merge is k + S(k) comparators

Alekseev's oblivious Top-k for d elements



- ▶ Alekseev's procedure realizes k-merge as pairwise comparison followed by sorting
- ► Complexity of k-merge is k + S(k) comparators
- Alekseev's Top-k for d elements has complexity

$$\mathcal{O}(d\log^2 k),$$

assuming practical $S(k) = \mathcal{O}(k \log^2 k)$

Improvement I: order-preserving merge

- ▶ Batcher's odd-even sorting network uses an alternative merging approach
 - We realize k-merge by removing redundant comparators in Batcher's merge
 - This reduces the complexity from $\mathcal{O}(k\log^2 k)$ in Alekseev's k-merge to $\mathcal{O}(k\log k)$

(a) Alekseev's 3-merge

(b) Our 3-merge

Improvement I: oblivious Top-*k* from truncation

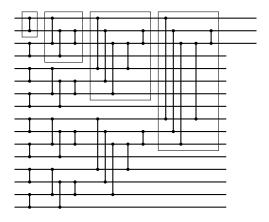
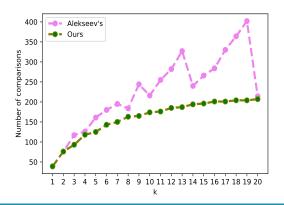


Figure: Our truncated sorting network for finding the 3 smallest values out of 16

Improvement I: comparison

- Our Top-k method for d elements has the same asymptotic complexity as Alekseev's: $\mathcal{O}(d\log^2 k)$ comparators
- Our solution contains fewer comparators in practice



Revisiting Yao's oblivious Top-*k*

► Andrew Yao improved Alekseev's Top-k using an unbalanced recursion

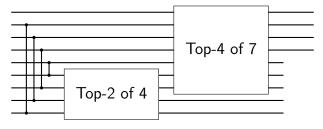


Figure: Selecting Top-4 of 9 elements using Yao's method

Revisiting Yao's oblivious Top-*k*

► Andrew Yao improved Alekseev's Top-k using an unbalanced recursion

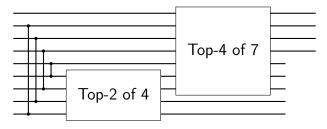


Figure: Selecting Top-4 of 9 elements using Yao's method

For $k \ll \sqrt{d}$, Yao's Top-k method has complexity $\mathcal{O}(d\log k)$

Revisiting Yao's oblivious Top-*k*

ightharpoonup Andrew Yao improved Alekseev's Top-k using an unbalanced recursion

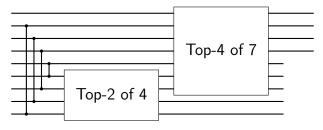
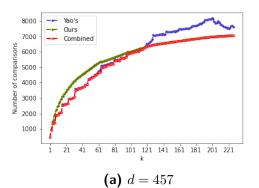


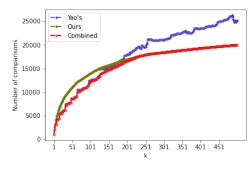
Figure: Selecting Top-4 of 9 elements using Yao's method

- For $k \ll \sqrt{d}$, Yao's Top-k method has complexity $\mathcal{O}(d \log k)$
- For $k \gg \sqrt{d}$, the complexity of Yao's Top-k method is asymptotically higher than $\mathcal{O}(d\log^2 k)$

Improvement II: combining our method with Yao's

► The combined network recursively calls our truncation method or Yao's method, depending on which one uses fewer comparators



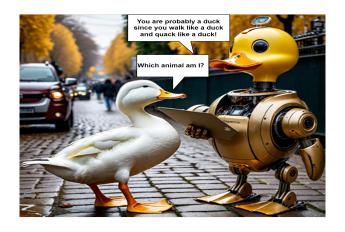


Outline

- Oblivious Algorithms for Secure Computation
- Oblivious Top-k Selection
- **3** Application: Secure *k*-NN Classification
- 4 Summary and Conclusion

Introduction to k-Nearest Neighbors (k-NN)

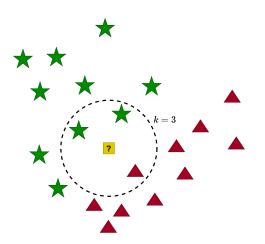
- Simple machine learning algorithm with broad applications
 - Web and image search, plagiarism detection, sports player recruitment, ...



Introduction to k-Nearest Neighbors (k-NN)

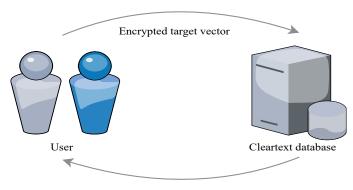
► Three-step method:

- 1 Compute distance between target vector and d database vectors
- 2 Find *k* closest database vectors and corresponding labels
- 3 Class assignment is majority vote of these k labels



Secure *k*-NN threat model

- Client sends encrypted k-NN query to server
- ► Server returns encrypted classification result



Encrypted class label

Homomorphic realization of *k*-NN

- 1 Compute distance between target vector and d database vectors
 - Relatively cheap
- 2 Find k closest database vectors and corresponding labels
 - Top-k network built from comparators
 - Each comparator is realized with two bootstrappings
 - One bootstrapping for the minimum and maximum
 - One bootstrapping for the corresponding class labels

- Where $i = \arg\min(\mathsf{dist}_0, \mathsf{dist}_1)$
- 3 Class assignment is majority vote of these k labels

Performance for MNIST dataset

► Implementation in tfhe-rs

k	d	Comparators [ZS21] Ours		Duration (s) [ZS21] Ours Speedup		
3	40 457 1000	780 104196 499500		30 4248 20837	17.5 202.3 441.1	1.7× 21× 47.2×
$\lfloor \sqrt{d} \rfloor$	40 457 1000	780 104196 499500		33 4402 21410	28.1 530.2 1252	1.2× 8.3× 17.1×

Outline

- Oblivious Algorithms for Secure Computation
- Oblivious Top-k Selection
- **3** Application: Secure k-NN Classification
- 4 Summary and Conclusion

Conclusion

- ► An oblivious Top-k algorithm that has complexity
 - $\mathcal{O}(d\log^2 k)$ in general
 - $\mathcal{O}(d \log k)$ for small $k \ll \sqrt{d}$
- ightharpoonup Top-k is an important submodule for various applications
 - For secure k-NN, the Top-k network leads to $47\times$ speedup compared to [ZS21]

Thank you for your attention!

ia.cr/2023/852