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Private Decision Tree Evaluation (PDTE)

▶ Given n feature values, evaluating a decision tree outputs a classification
label (e.g. 0/1)

x1 ≥ 5?

x2 ≥ 3?

x2 ≥ 8?

0 1

x3 ≥ 2?

1 0

x2 ≥ 7?

x3 ≥ 2?

0 1

x3 ≥ 4?

1 0

▶ Simple machine learning algorithm with broad applications
• credit scoring, biometric authentication,...
• sensitive data requires enhanced-privacy
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PDTE from Homomorphic Encryption
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PDTE from Homomorphic Encryption

▶ SortingHat [CDPP22] uses TFHE for single-query scenarios
▶ Level Up [MNLK23] uses the levelled BFV scheme, which supports SIMD

(Single-Instruction Multiple-Data) operations

▶ Can we further exploit the SIMD capacity for batched queries?

Batched PDTE
▶ Evaluate one decision tree for multiple samples in parallel
▶ Example application: a bank outsources a credit-scoring decision tree and

needs evaluations for various applicants without revealing their profiles
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Folklore bit-wise comparator

▶ Two s-bit numbers a, b can be compared using recursion

GT(a, b) = θGT (a[1], b[1]) + θEQ(a[1], b[1]) · GT(a[2, s], b[2, s])

▶ For ciphertext a and plaintext b,
• Bit comparisons θEQ and θGT are at most degree 1
• The total number of multiplications is s − 1
• The minimum multiplicative depth is log s
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Comparing one-hot encoded numbers

▶ Two s-bit numbers a, b are encoded into H(a), H(b) ∈ {0, 1}2s

▶ The ciphertext H(a) and plaintext H(b) can be compared as

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Return sum

plaintext H(b)

ciphertext H(a)
GT(a, b) =

▶ The number of multiplications is zero, but the bitlength is 2s instead of s

▶ Can we balance computation and communication?
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Our constant-weight piece-wise comparator

▶ With a constant hamming weight h, an s-bit number a can be encoded
into CWh,ℓ(a) of ℓ bits, where(

ℓ

h

)
≥ 2s ⇒ ℓ ∈ O( h

√
h!2s + h)

▶ The ciphertext CWh,ℓ(a) and plaintext CWh,ℓ(b) can be compared
piece-wise recursively

0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Sum> 0? Sum> 0?

CWh,ℓ(b)

CWh,ℓ(a)
GTh(a, b) =
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Our batched constant-weight piece-wise comparator

▶ The depth is O(log h), which is independent of the input bitlength s

▶ For BFV with N SIMD slots, the following packing method allows the
comparison between N encrypted a and 1 plaintext b

ℓ ciphertexts

CWh,ℓ(a(1)) · · · CWh,ℓ(a(i)) · · · CWh,ℓ(a(N))

9 Faster PDTE for Batched Input from HE



Our batched constant-weight piece-wise comparator

▶ The depth is O(log h), which is independent of the input bitlength s

▶ For BFV with N SIMD slots, the following packing method allows the
comparison between N encrypted a and 1 plaintext b

ℓ ciphertexts

CWh,ℓ(a(1)) · · · CWh,ℓ(a(i)) · · · CWh,ℓ(a(N))

9 Faster PDTE for Batched Input from HE



Range Cover Comparator (RCC) [SBC+07]

▶ Given two s-bit numbers a, b,

GT(a, b) ⇐⇒ a ∈ [b + 1, 2s − 1]

▶ If a ∈ [b + 1, 2s − 1], then PE(a) ∩ RC(b + 1, 2s − 1) = ∅; otherwise,
they will intersect at one node.

root
0

00
000 001

01
010 011

1
10

100 101
11

110 111

A binary interval tree containing [0, 7]. For example, the point encoding of the number 5 is
PE(5) = {1, 10, 101} and the range cover of [1, 7] is RC(1, 7) = {1, 01, 001}.
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Batched RCC
▶ 1 GT comparator ⇐⇒ s equality checks (one for each level)

▶ In [MNLK23], these equality checks are realized in constant-weight
encodings for s bit numbers
• But the operands in equality checks are i bits for i = 1, 2, . . . , s
• Restriction of their packing method

▶ When comparing N encrypted a and 1 plaintext b
• We encode the point encoding PE(a(i)) in SIMD slots using CWhi,ℓi(·)
• This improves the amortized storage and computation costs
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Performance
Amortized

Computational Time
Amortized Client-to-server

Communication Cost
Multiplicative

Depth

Folklore
bit-wise

[MNLK23]
⊥ 1982 µs 3 kb 4

RCC
[MNLK23]

h = 2 8340 µs 1342 kb 1

h = 4 1526 µs 136 kb 2

h = 8 1308 µs 70 kb 3

Our CW
piece-wise

h = 2 18 µs (72×) 52 kb 2

h = 4 39 µs (33×) 5 kb 4

Our batched
RCC

hs = 2 41 µs (32×) 180 kb 1

hs = 4 82 µs (16×) 38 kb 2

Table: Performance of different batched ciphertext-plaintext comparators for 16-bit
numbers in BFV with N = 214 and t = 65537.
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Tree Traversal in PDTE
▶ In the plaintext evaluation of a depth-d decision tree, at most d decision

nodes are evaluated

▶ In the homomorphic evaluation of a decision tree,
• all the m = O(2d) nodes need to be evaluated using ciphertext-plaintext

comparisons
• the encrypted comparison results are aggregated by tree traversal

▶ Tree traversal outputs an encrypted indicator array Enc(r)
• In SumPath [MNLK23], the array r contains only one zero value corresponding to

the output leaf
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The SumPath method [MNLK23]

▶ PDTE with SumPath
• The server sends Enc(r) of length O(2d) to the client
• The client decrypts, finds the only leaf with zero value and looks up the

corresponding classification of this leaf

▶ Drawbacks
• O(2d) server-to-client communication
• Limited extension to tree ensembles such as random forests
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The adapted SumPath method

r1 r2 r3 r4 r5 r6 r7 r8result r:

0classification values v: 1 1 0 0 1 1 0

▶ Obtain an encrypted unit vector r, whose inner product with the plaintext
classifications gives the encrypted classification value

▶ This requires an additional multiplicative depth log d
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Performance for 11-bit features

SortingHat Level Up (h = 4) BPDTE CW (h = 2)

Comparison

Traversal

Query
Size

Comparison

Traversal

Query
Size

Comparison

Traversal

Query
Size

Breast
7 ms 178 ms

960 kb
139 µs 117 µs

310 kb
9 µs 139 µs

90 kb
Total: 185 ms Total: 256 µs Total: 148 µs (1.7×)

Heart
3 ms 47 ms

416 kb
156 µs 25 µs

135 kb
3 µs 18 µs

117 kb
Total: 50 ms Total: 181 µs Total: 21 µs (8.6×)

Steel
3 ms 59 ms

1056 kb
125 µs 34 µs

341 kb
4 µs 12 µs

297 kb
Total: 62 ms Total: 159 µs Total: 16 µs (9.9×)

Table: Amortized performance with batch size 16384 and input feature bitlength s = 11.
The lattice dimension is 211, 213 and 214, respectively.

18 Faster PDTE for Batched Input from HE



Performance for 16-bit features

Level Up (h = 4) BPDTE RCC (hs = 4) BPDTE CW (h = 2)

Comparison

Traversal

Query
Size

Comparison

Traversal

Query
Size

Comparison

Traversal

Query
Size

Breast
583 µs 159 µs

968 kb
75 µs 139 µs

1140 kb
17 µs 138 µs

1560 kb
Total: 742 µs Total: 214 µs (3.4×) Total: 155 µs (4.7×)

Heart
309 µs 34 µs

420 kb
20 µs 18 µs

494 kb
4 µs 18 µs

676 kb
Total: 343 µs Total: 38 µs (9.0×) Total: 22 µs (15.5×)

Steel
262 µs 46 µs

1065 kb
25 µs 12 µs

1254 kb
6 µs 12 µs

1716 kb
Total: 308 µs Total: 37 µs (8.3×) Total: 18 µs (17.1×)

Table: Amortized performance with batch size 16384 and input feature bit-length s = 16.
The lattice dimension is 213, 214 and 214, respectively.
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Conclusion

▶ Two batched ciphertext-plaintext comparators
• the constant-weight piece-wise comparator and the batched RCC comparator
• up to 72× speedup for 16-bit numbers

▶ The adapted SumPath tree traversal method
• O(1) server-to-client communication

▶ Batched PDTE protocols from combining these building blocks
• up to 17× faster than [MNLK23] in batch size 16384

20 Faster PDTE for Batched Input from HE



Conclusion
▶ Two batched ciphertext-plaintext comparators

• the constant-weight piece-wise comparator and the batched RCC comparator
• up to 72× speedup for 16-bit numbers

▶ The adapted SumPath tree traversal method
• O(1) server-to-client communication

▶ Batched PDTE protocols from combining these building blocks
• up to 17× faster than [MNLK23] in batch size 16384

20 Faster PDTE for Batched Input from HE



Conclusion
▶ Two batched ciphertext-plaintext comparators

• the constant-weight piece-wise comparator and the batched RCC comparator
• up to 72× speedup for 16-bit numbers

▶ The adapted SumPath tree traversal method
• O(1) server-to-client communication

▶ Batched PDTE protocols from combining these building blocks
• up to 17× faster than [MNLK23] in batch size 16384

20 Faster PDTE for Batched Input from HE



Thank you for your attention!
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